Setting Up a Python-Based Service for OpenAI API with GitHub-Hosted Prompts
Here’s a markdown document to describe setting up a Python-based service that uses a GitHub repository containing prompts to leverage when calling the OpenAI Assistant API:
markdown Copy code
Setting Up a Python-Based Service for OpenAI API with GitHub-Hosted Prompts
This guide walks through setting up a Python-based service that retrieves prompts from a GitHub repository and uses them to make calls to the OpenAI Assistant API.
Prerequisites
- Python Environment: Ensure Python 3.8+ is installed.
- GitHub Repository: A repository containing your prompt files in structured text (e.g., JSON, YAML, or plain text).
- OpenAI API Key: Obtain an API key from OpenAI.
- Git Access: Set up access (HTTPS/SSH) to clone the GitHub repository.
Step 1: Create a GitHub Repository for Prompts
- Create a repository on GitHub to store your prompts.
- Organize prompts into a structured format:
- Example: Store JSON files in a
/prompts
directory.
{ "name": "example_prompt", "description": "An example prompt", "content": "Write a detailed guide on {topic}." }
- Example: Store JSON files in a
Commit and push the changes: bash Copy code git add . git commit -m “Add initial prompts” git push origin main Step 2: Set Up the Python Service 2.1 Install Required Libraries Set up a Python virtual environment and install dependencies:
bash Copy code python3 -m venv venv source venv/bin/activate pip install openai gitpython pyyaml 2.2 Create the Python Service Script Save the following script as service.py:
python Copy code import os import git import openai import json
Configuration
GITHUB_REPO_URL = “https://github.com/your-username/your-repo" LOCAL_REPO_PATH = “./prompts_repo” OPENAI_API_KEY = “your-openai-api-key”
Clone or Pull Repository
if not os.path.exists(LOCAL_REPO_PATH): git.Repo.clone_from(GITHUB_REPO_URL, LOCAL_REPO_PATH) else: repo = git.Repo(LOCAL_REPO_PATH) repo.git.pull()
Load Prompts
def load_prompts(): prompts_dir = os.path.join(LOCAL_REPO_PATH, “prompts”) prompts = [] for file_name in os.listdir(prompts_dir): if file_name.endswith(".json”): with open(os.path.join(prompts_dir, file_name), “r”) as f: prompts.append(json.load(f)) return prompts
Call OpenAI API
def call_openai_api(prompt): openai.api_key = OPENAI_API_KEY response = openai.Completion.create( model=“text-davinci-003”, prompt=prompt, max_tokens=200 ) return response.choices[0].text.strip()
Main Function
if name == “main”: prompts = load_prompts() for prompt in prompts: print(f"Prompt: {prompt[‘content’]}") response = call_openai_api(prompt[‘content’]) print(f"Response: {response}") Step 3: Run the Service Clone Repository & Setup:
Replace your-username/your-repo with your GitHub repository path. Replace your-openai-api-key with your OpenAI API key. Run the Service:
bash Copy code python service.py Customizations Prompt Parsing: Modify the load_prompts function to support different formats like YAML. Error Handling: Add robust error handling for API calls and Git operations. Scheduling: Use a task scheduler like cron or apscheduler for periodic updates and executions. Deployment: Containerize the service with Docker for consistent deployment. Next Steps Enhance Prompt Structure: Add metadata like categories or tags for dynamic prompt selection. Integrate CI/CD: Automate deployment using tools like GitHub Actions. Logging: Integrate a logging framework to monitor API usage and errors. With this setup, your service can dynamically fetch and use prompts from GitHub, allowing for a streamlined and scalable workflow with OpenAI’s Assistant API.